Hydrogen – Aspects of safety

Wind Finland 2023

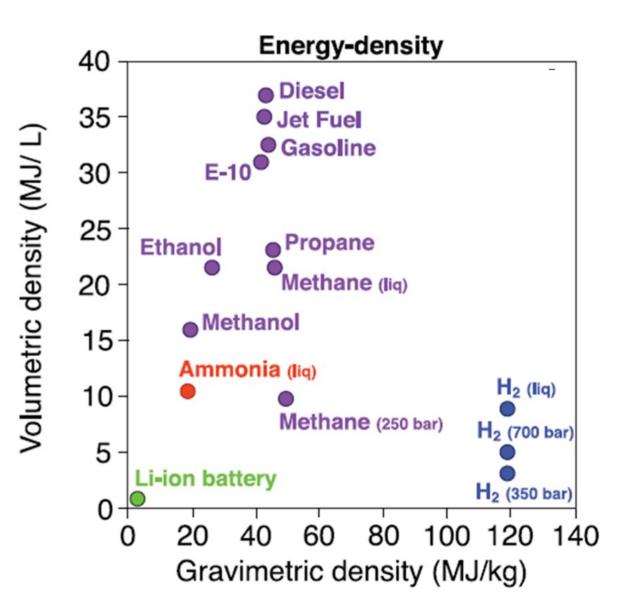
Kiwa Inspecta

Satu Tuurna 4.10.2023

Trust Quality Progress

Hydrogen

- Lightest element, at. weight 1 g/mol density 90 g/m³; transparent, no odour
- Smallest atom (& molecule, H₂) and common: 75% of the mass of universe
- Reactive, on earth rarely free


- → **low density**, diluted in open space, more slowly in closed environment
- → leaks at joints / contact surfaces and even through walls easier than most gases
- → ignites at 4-75% concentration, 1/10 of min. Ignition energy of gasoline (0,02 mJ), burns with 2045°C flame to water
- \rightarrow weakens and embrittles structural materials

Hydrogen as energy carrier

- Great energy density on a mass basis resulting in minimal weight considerations lightweight
- Poor energy density on volumetric basis requiring increased space requirements
 - high pressures and low temperatures

■ **Safety**: all flammable/explosive, H₂ easily ignited

Davies et al. Science 2018

Hydrogen – regulatory framework and support

EU directives, national regulation

- EU level requirements: safety, fair playing field for stakeholders, e.g. REII, SEVESO III, ATEX
- national legislation safety, legal framework
- national licencing and supervisory authorisation on safety of hazardous structures and materials/chemicals

Standards and guidelines

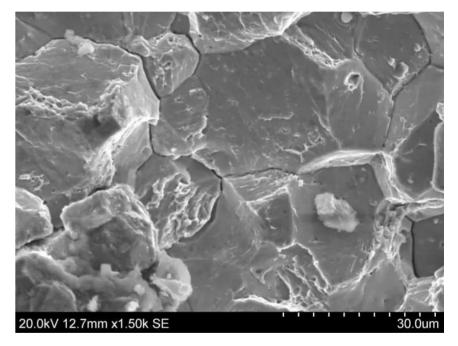
- international (ISO/IEC, EN, other) standards related to hydrogen
- national, regional, industry/company-specific standards, rules, guidelines, recommendations
- H₂ transition promotes updating

For example: ISO 31010 Risk assessment

prEN 13480-11, ASME B31.12 Piping design

prEN 13445-15 Pressure vessels

EN 16668 Industrial valves

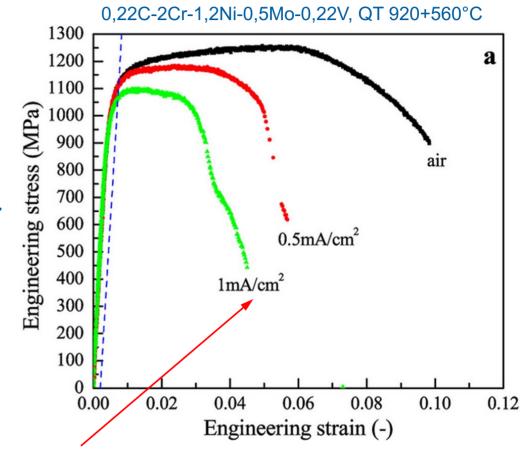

EN 1591-1 Flange tightness (EN 13445-3 Annex G)

EN 13555 Seal performance

Hydrogen embrittlement and cracking of steel

- Hydrogen has a negative effect on the properties of materials, known as hydrogen embrittlement (HE)
- Exposure to hydrogen can make some metal vessels or pipelines brittle and increase the risk of cracking, especially where there are pressure variations
- Exposure can lead early, unpredicted failures

https://uscorrosion.com/index.php/hydrogen-embrittlement-failure-analysis


Hydrogen embrittlement (HE) and cracking of steel

Factors promoting embrittlement/cracking

- ferritic microstructure, high strength (hardness)
- high pressure, ingress of atomic hydrogen
- fluctuating loading (fatigue)
- construction details are important; manipulations like welding and bending lead to higher strength/hardness → increased HE sensitivity

Protective factors

- austenitic microstructure
- hydrogen trapping by microstructural features
- temperature > $300^{\circ}C \rightarrow no HE$
- ferritic Rm < 700 MPa, hardness < 240 HV
 - \rightarrow decreased riks of HE (cycling is still weakening)

Low ductility with hydrogen in steel

Cheng et al. MSEA 2022

Hydrogen – materials selection

Best materials for hydrogen service:

- mostly austenitic steels, e.g. 304, 347, 316L, some Ni alloys

Acceptable: cost-effective ferritic C-, CMn- and Cr-Mo-steels

- limited by allowable strength/hardness, or case-specific acceptance

To be avoided in hydrogen environments:

- stainless ferritic, martensitic and duplex steels, cast irons
- Al and its alloys in moist/wet environments, other than oxygen-free Cu
- Ni, Pb, Sn and their alloys; polymers (plastics, with few exceptions)

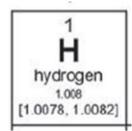
Kiwa Inspecta

Hydrogen: challenges in operation

Industrial production and use

- organised, centralised, recorded
- controlled with planned service & maintenance

Local and distributed production and use


- expanded exposure to risk
- variability, including extremes of application
- potentially reduced control and monitoring
 - \rightarrow need to manage case-specific risks
 - \rightarrow planning, automation, new solutions to compensate for the exposure

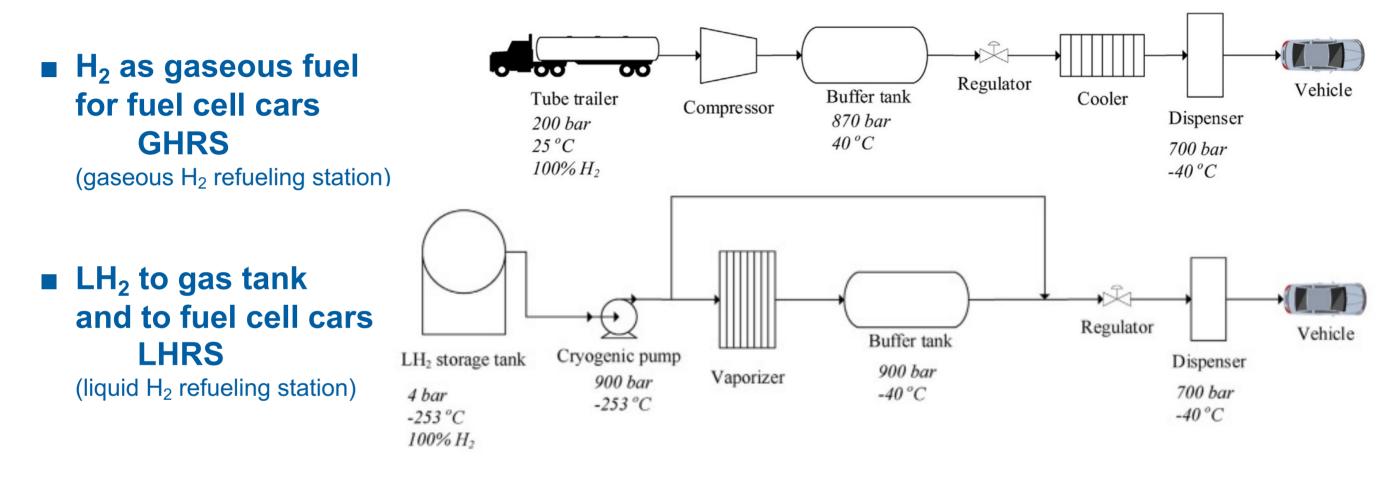
Hydrogen – challenges in transport, storage

Tube trailers

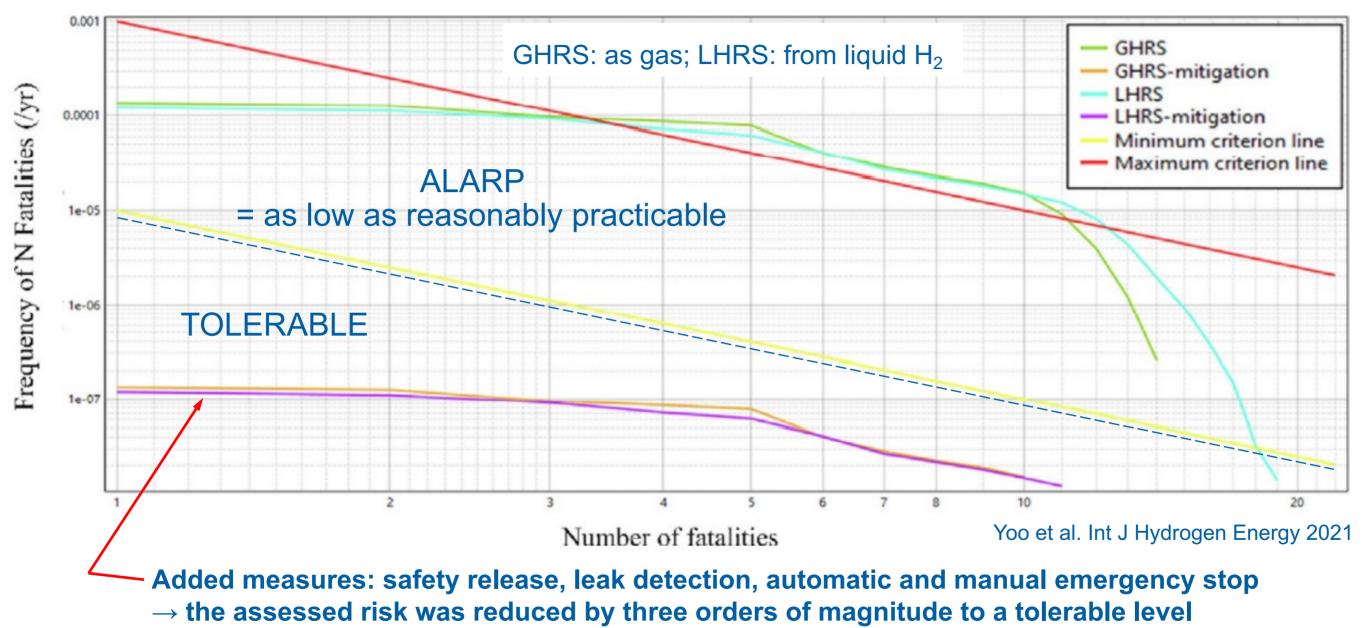
- in buildings and tunnels: risk of accidents, leaks if insufficiently diluted/ventilated

Shipping, pipework, storage vessels

- loading and discharge at harbours
- connections, valves, leak control
- heat transfer for liquified H₂ vessels



- Issues of safety (incl. operation):
 - hazard/risk assessment for facilities
 - ventilation, leak & flame detection
 - functional condition of equipment
 - minimizing risk exposure of personnel
 - instructions, checklists for maintenance and operation, training
 - completing and signing off work phases
 - ... https://tukes.fi


Example: risks of H₂ refueling stations

Yoo et al. Int J Hydrogen Energy 2021

Risks of H₂ refueling stations without and with added mitigation measures

Summary – opportunities and gaps

Low carbon H₂

- rapid expansion of wind, solar, grid connections

Gaps and bottlenecks

- EN standards for piping, pressure vessels
- no underground caverns for CO_2 or hydrogen storage
- limited experience on H₂ in non-industrial applications
 - \rightarrow for smaller installations where people can access, it will not be possible to provide the same awareness as in chemical industries
 - \rightarrow A safe design of the installation is of primary importance

Factors of uncertainty and drivers

- changes of physical and political climate, cost
- developments in systems and technology for safe and cost-effective production, handling and use of hydrogen

